Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

George E. Kostakis,^a Ebbe Nordlander,^b Matti Haukka^{c*} and John C. Plakatouras^a

^aSection of Inorganic Chemistry, Department of Chemistry, University of Ioannina, 451 10 Ioannina, Greece, ^bInorganic Chemistry, Center for Chemistry and Chemical Engineering, Lund University, Box 124, SE-221 00 Lund, Sweden, and ^cDepartment of Chemistry, University of Joensuu, Box 111, FI-80101 Joensuu, Finland

Correspondence e-mail: matti.haukka@joensuu.fi

Key indicators

Single-crystal X-ray study T = 120 KMean σ (C–C) = 0.015 Å R factor = 0.063 wR factor = 0.180 Data-to-parameter ratio = 12.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. Di-µ-chloro-bis[(2,2-bipyridine)chlorocopper(II)]

The title compound, $[Cu_2Cl_4(C_{10}H_8N_2)_2]$, represents the first example of a simple dimeric coordination complex of Cu^{II} and 2,2'-bipyridine (bpy). The metal is in a five-coordinate distorted square-pyramidal environment, bonded to a 2,2'-bipyridine molecule, two bridging chlorides and one terminal chloride. There is a centre of symmetry at the mid-point of the $Cu \cdot \cdot Cu$ vector.

Comment

Copper compounds display a variety of coordination geometries and coordination numbers that vary from three to six. Jahn–Teller distortion leads to the absence of regular octahedral structures in Cu^{II} chemistry. Complexes of the general formula Cu(NN) X_2 (X =Cl and/or Br; NN = a dinitrogen chelate) are known to have different geometries with the coordination number of the copper atom varying from four to six. Particular attention has been devoted to polymeric Cu^{II} complexes with chlorides and substituted bipyridines as ligands (Garland *et al.*, 1988; Hernandez-Molina *et al.*, 1999; Wang *et al.*, 2004).

The title compound, (I), represents the first example of a binuclear complex of Cu^{II} chloride and 2,2'-bipyridine and is the most distorted when compared with the other two dimeric complexes containing copper and (a substituted) bipyridine (González *et al.*, 1993; Tynan *et al.*, 2005), since the distance of the bridging chloride to a vicinal Cu atom is 2.909 (3) Å. The Cu^{II} atom is five-coordinate and the geometry about the Cu atom is square pyramidal. The coordination sites are occupied by two N atoms provided by the chelate 2,2'-bipyridine, as well as two asymmetrically bridging and one terminal chlorides. There is a centre of symmetry at the mid-point of the $Cu \cdot \cdot \cdot Cu$ vector.

The interaction Cu1···Cl1ⁱⁱ, to form a chain structure, is very weak since the distance is 3.130 (3) Å (Wang *et al.*, 2004)

Received 28 November 2005 Accepted 6 December 2005 Online 10 December 2005

© 2006 International Union of Crystallography

Printed in Great Britain - all rights reserved

The molecular structure of (I), showing 40% probability displacement ellipsoids. Unlabelled atoms are related to labelled atoms by the symmetry operation (2 - x, -y, 1 - y).

[symmetry code: (ii) 1 - x, -y, 1 - z]. Although there are no stacking interactions in the crystal structure, it is stabilized by a series of intra- and inter-chain $C-H \cdots Cl$ contacts (Table 2 and Fig. 2). The H1-Cl2 and H10-Cl1 interactions constitute the intrachain contacts, and the H4-Cl2ⁱⁱⁱ and H7-Cl1ⁱⁱⁱ interactions are very weak inter-chain contacts [symmetry code: (iii) x, 1 + y, z].

Experimental

Compound (I) was produced unexpectedly. A solution of 2,2'-bipyridine (15.6 mg, 0.1 mmol) in methanol (1 ml) was added to an aqueous solution (9 ml) of CuCl₂ (13.3 mg, 0.1 mmol) containing an equivalent amount of trans-aconitic acid (11.6 mg, 0.066 mmol). A clear green solution was obtained. Green needles of (I) precipitated after slow evaporation of the solution (yield 10 mg, 35%).

Crystal data

$[Cu_2Cl_4(C_{10}H_8Cl_2N_2)_2]$	Z = 1
$M_r = 581.24$	$D_x = 1.897 \text{ Mg m}^{-3}$
Triclinic, P1	Mo $K\alpha$ radiation
a = 7.1923 (7) Å	Cell parameters from 6682
b = 8.9872 (8) Å	reflections
c = 9.4241 (9) Å	$\theta = 2.6-24.7^{\circ}$
$\alpha = 115.136 \ (6)^{\circ}$	$\mu = 2.63 \text{ mm}^{-1}$
$\beta = 107.201 \ (5)^{\circ}$	T = 120 (2) K
$\gamma = 95.617 \ (4)^{\circ}$	Needle, green
$V = 508.91 (8) \text{ Å}^3$	$0.22 \times 0.06 \times 0.02 \text{ mm}$
Data collection	
Nonius KappaCCD diffractometer	1701 independent reflections
φ scans and ω scans with κ offsets	1142 reflections with $I > 2\sigma(I)$

 $= -10 \rightarrow 10$

φ scans and ω scans with κ offsets	1142 reflection
Absorption correction: multi-scan	$R_{\rm int} = 0.103$
(XPREP in SHELXTL;	$\theta_{\rm max} = 24.7^{\circ}$
Sheldrick, 2005)	$h = -8 \rightarrow 8$
$T_{\min} = 0.600, \ T_{\max} = 0.944$	$k = -10 \rightarrow 10$
6682 measured reflections	$l = -10 \rightarrow 11$

Figure 2

A representation of intra- and inter-chain C-H···Cl contacts (dashed lines), resulting in the formation of a one-dimensional chain.

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.066P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.063$	+ 2.6959 <i>P</i>]
$wR(F^2) = 0.180$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.17	$(\Delta/\sigma)_{\rm max} < 0.001$
1701 reflections	$\Delta \rho_{\rm max} = 1.09 \text{ e } \text{\AA}^{-3}$
136 parameters	$\Delta \rho_{\rm min} = -0.84 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	

Table 1

Selected geometric parameters (Å, °).

Cu1-N2	2.024 (7)	Cu1-Cl2	2.280 (3)
Cu1-N1	2.037 (7)	Cu1-Cl2 ⁱ	2.909 (3)
Cu1-Cl1	2.272 (3)	Cl1-Cu1 ⁱⁱ	3.130 (3)
N2-Cu1-N1	81.0 (3)	Cl1-Cu1-Cl2	92.52 (9)
N2-Cu1-Cl1	93.4 (2)	N2-Cu1-Cl2 ⁱ	88.4 (2)
N1-Cu1-Cl1	170.2 (2)	N1-Cu1-Cl2 ⁱ	90.1 (2)
N2-Cu1-Cl2	174.0 (2)	Cl1-Cu1-Cl2 ⁱ	97.79 (9)
N1-Cu1-Cl2	93.3 (2)	Cl2-Cu1-Cl2 ⁱ	89.91 (8)

Symmetry codes: (i) -x + 2, -y, -z + 1; (ii) -x + 1, -y, -z + 1.

Table 2	_
Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C1 - H1 \cdot \cdot \cdot Cl2$	0.95	2.61	3.209 (11)	121
$C10-H10\cdots Cl1$	0.95	2.62	3.209 (9)	121
C7−H7···Cl1 ⁱⁱⁱ	0.95	2.81	3.542 (10)	135
C4-H4···Cl2 ⁱⁱⁱ	0.95	2.69	3.517 (10)	146

Symmetry code: (iii) x, y + 1, z.

The H atoms were positioned geometrically and allowed to ride on their parent atoms, with C-H = 0.95 Å and $U_{iso}(H) = 1.2U_{eq}(parent$ atom). The highest density peak is loacted 1.09 Å from atom Cu1.

Data collection: COLLECT (Nonius, 2000); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Crystal Impact, 2005) and X-SEED (Barbour, 2001); software used to prepare material for publication: SHELXL97.

This research has been sponsored by the EU Marie Curie progam, the Swedish Research Council (VR) and the Academy of Finland.

References

- Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.
- Crystal Impact (2005). *DIAMOND*. Version 3.1. Crystal Impact GbR, Bonn, Germany.
- Garland, M. T., Grandjean, D., Spodine, E., Atria, A. M. & Manzur, J. (1988). Acta Cryst. C44, 1209–1212.
- González, O., Atria, A. M., Spodine, E., Manzur, J. & Garland, M. T. (1993). Acta Cryst. C49, 1589–1591.
- Hernandez-Molina, M., Gonzalez-Platas, J., Ruiz-Perez, C., Lloret, F. & Julve, M. (1999). Inorg. Chim. Acta, 284, 258–265.

Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.

- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (2005). *SHELXTL*. Version 6.14-1. Bruker AXS Inc., Madison, Wisconsin, USA.
- Tynan, E., Jensen, P., Lees, A. C., Moubaraki, B., Murray, K. S. & Kruger P. E. (2005). *CrystEngComm*, **7**, 90–95.
- Wang, Y.-Q., Bi, W.-H., Li, X. & Cao, R. (2004). Acta Cryst. E60, m876– m877.